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Abstract.—Advocates of cladistic parsimony methods have invoked the philosophy of Karl Popper in
an attempt to argue for the superiority of those methods over phylogenetic methods based on Ronald
Fisher’s statistical principle of likelihood. We argue that the concept of likelihood in general, and its
application to problems of phylogenetic inference in particular, are highly compatible with Popper’s
philosophy. Examination of Popper’s writings reveals that his concept of corroboration is, in fact,
based on likelihood. Moreover, because probabilistic assumptions are necessary for calculating the
probabilities that de�ne Popper’s corroboration, likelihood methods of phylogenetic inference—with
their explicit probabilistic basis—are easily reconciled with his concept. In contrast, cladistic parsi-
mony methods, at least as described by certain advocates of those methods, are less easily reconciled
with Popper’s concept of corroboration. If those methods are interpreted as lacking probabilistic as-
sumptions, then they are incompatible with corroboration. Conversely, if parsimony methods are
to be considered compatible with corroboration, then they must be interpreted as carrying implicit
probabilistic assumptions. Thus, the non-probabilistic interpretation of cladistic parsimony favored
by some advocates of those methods is contradicted by an attempt by the same authors to justify par-
simony methods in terms of Popper’s concept of corroboration. In addition to being compatible with
Popperian corroboration, the likelihood approach to phylogenetic inference permits researchers to test
the assumptions of their analytical methods (models) in a way that is consistent with Popper’s ideas
about the provisional nature of background knowledge. [Assumptions; corroboration; Karl Popper;
likelihood; parsimony; philosophy; phylogeny; probability.]

Thus our analysis shows that statistical methods are
essentially hypothetical-deductive, and that they pro-
ceed by the elimination of inadequate hypotheses—as
do all other methods of science.

Popper 1959: 413

We can interpret . . . our measure of degree of corrob-
oration as a generalization of Fisher’s likelihood function.

Popper 1959: 413–414

Methods of phylogenetic inference based
on the statistical principle of likelihood (e.g.,
Fisher, 1946; Edwards, 1972) are being used
with increasing frequency by systematic bi-
ologists. Advocates view these methods as
powerful tools for analyzing phylogenetic re-
lationships, particularly when the evolution-
ary history of a group exhibits characteristics
that are expected to cause problems for other
methods (e.g., Felsenstein, 1978; Hillis et al.,
1994). Other advantagesof phylogenetic like-
lihood methods include explicitness and thus
testability of assumptions (e.g., Goldman,
1993a), robustness to violations of assump-

tions (e.g., Huelsenbeck, 1995), and consis-
tency and ef�ciency under diverse condi-
tions (e.g., Huelsenbeck, 1995). Nevertheless,
likelihood methods have come under criti-
cism from advocates of cladistic parsimony
(e.g., Siddall and Kluge, 1997), an alternative
class of methods that minimize the number
of character state transformations necessary
to account for the observed distributions of
character states among taxa.

Preferences for different analytical meth-
ods sometimes re�ect alternative criteria
for evaluating those methods. For example,
some systematists favor criteria based on
performance, using simulated, laboratory-
generated, and well-supported real phyloge-
nies to evaluate which methods reconstruct
phylogenies most accurately under differ-
ent conditions (reviewed by Hillis, 1995).
Others favor criteria based on philosophy,
evaluating methods based on their consis-
tency with a theory of epistemology (e.g.,
Wiley, 1975; Gaffney, 1979; Kluge, 1997a).
Performance-oriented studies have shown
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that both likelihood and parsimony meth-
ods perform well under diverse phylogenetic
conditions, though likelihood methods that
model the probability of character change as
a function of branch length perform better
under certain conditions involving branch-
length inequalities (e.g., Huelsenbeck, 1995;
Huelsenbeck and Crandall, 1997; and refer-
ences therein). In contrast, authors of a recent
philosophy-oriented treatment (Siddall and
Kluge, 1997) have argued that parsimony
conforms to a theory of epistemology devel-
oped by Karl Popper (e.g., 1959, 1962, 1983),
whereas likelihood supposedly does not.

In this paper we evaluate likelihood meth-
ods of phylogenetic inference in the context
of Popper’s writings on corroboration. We ar-
gue that Popper’s corroboration is based on
the general principle of likelihood and that
likelihood methods of phylogenetic infer-
ence are thoroughly consistent with corrobo-
ration. We also evaluate cladistic parsimony
in the same context and argue thatparsimony
methods are compatible with Popper’s cor-
roboration (see also Carpenter, 1992; Farris,
1995; Carpenter et al., 1998) only if they are
interpreted as incorporating implicit proba-
bilistic assumptions. Our conclusions contra-
dict the views of authors (e.g., Siddall and
Kluge, 1997) who have attempted to justify a
preference for parsimony over likelihood on
the basis of Popper’s concept of corrobora-
tion yet deny that parsimony methods carry
probabilistic assumptions. We also argue that
the likelihood approach to phylogenetic in-
ference, which permits evaluation of the as-
sumptions inherent in its models, is consis-
tent with Popper’s views on the provisional
nature of background knowledge. We do not
attempt to address the entire spectrum of
objections to likelihood raised by advocates
of cladistic parsimony. Instead, we empha-
size the relationship between Popper’s cor-
roboration and different methods of phylo-
genetic inference. Nevertheless, our analysis
addresses some other objections to likelihood
methods that are tied to Popper’s philoso-
phy, including the problem of induction, dif-
ferent interpretations of probability, and the
nature of background knowledge.

PARSIMONY AND LIKELIHOOD

Before analyzing parsimony and likeli-
hood methods of phylogenetic inference in
the context of Popper’s ideas about corrob-

oration, let us �rst describe the methods
brie�y and clarify some terminological is-
sues. The principle of parsimony, also known
as Ockham’s razor, is a general philosophical
principle commonly attributed to the English
Franciscan William Ockham (1285–1347).
This principle states that entities are not to
be multiplied beyond necessity, which is of-
ten interpreted as implying that when alter-
native hypotheses explain the data equally
well, the simplest one is to be preferred
(Sober, 1994). Although frequently invoked
as a general scienti�c virtue, the justi�cation
for this practice has been questioned (e.g.,
Sober, 1994).

The principle of parsimony should not be
confused with the method of parsimony used
in phylogeny reconstruction, also known
as cladistic parsimony, which ranks alterna-
tive phylogenetic trees on the basis of the
minimum number of character transforma-
tions needed to account for the observed
occurrences of character states among taxa
(e.g., Camin and Sokal, 1965; Farris, 1970;
Farris et al., 1970). The method of cladis-
tic parsimony is really a set of methods,
because transformations both within and
among characters can be weighted (assigned
costs) in various ways. More importantly, it
is an optimality criterion—that is, a measure
for establishing a preference among alterna-
tive trees (as opposed to a method for �nd-
ing the preferred tree or trees). The method
of cladistic parsimony conforms to the gen-
eral principle of parsimony in that hypoth-
esized character transformations (and thus
hypothesized homoplasies) are not multi-
plied beyond necessity, though what counts
as a necessary hypothesis of character trans-
formation depends on the costs assigned to
different classes of transformations. Never-
theless, the method of cladistic parsimony
should not be confused with the principle
of parsimony. The principle is a very general
one that can be applied in the contextof many
different methods, including those based on
likelihood (see below).

Likelihood, developed by Ronald A. Fisher
(1890–1962), is a general statistical concept
based on the probability of the observed
data (see Edwards, 1972, for a discussion
of the history of likelihood). As stated by
Edwards (1972:9), “The likelihood, L(H j R),
of the hypothesis H given data R, and a
speci�c model, is proportional to P(R j H)
[the probability of obtaining results R
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given the hypothesis H], the constant of
proportionality being arbitrary.” If the
constant of proportionality is taken to
equal one (e.g., Goldman, 1990:346), then
L(H j R) D P(R j H), or, as restated by
Popper (1983:243; Popper’s lowercase “l”
has been capitalized for consistency):

L(h,e) D p(e,h) (1)

where h D hypothesis, e D evidence, p D
probability, and the term on the right is a
conditional probability. Thus, the expression
is to be read “the likelihood of the hypoth-
esis given the evidence is the probability of
the evidence given the hypothesis.” Most au-
thors use “j” in place of Popper’s commas, a
convention that we adopt in the remainder
of this paper.

The concept of likelihood forms the basis
of the law of likelihood, which is used to assess
“the relative merits of rival hypotheses in the
light of observational or experimental data
that bear upon them” (Edwards, 1972:1). Ac-
cording to the law of likelihood, “a particular
set of data supports one statistical hypothe-
sis better than another if the likelihood of the
�rst hypothesis, on the data, exceeds the like-
lihood of the second hypothesis” (Edwards,
1972:30). In this sense, likelihood, like cladis-
tic parsimony, is an optimality criterion.

Calculating the probability of the observed
data given a hypothesis requires that prob-
abilistic predictions about the data can be
derived from the hypothesis (h). For com-
monly cited examples involving coin �ips,
card games, and the like, the hypothesis it-
self can often be described as a probabilistic
model (e.g., the coin is unbiased, or pheads D
ptails), in which case probabilistic predictions
about the data can be derived directly from
the hypothesis. Many scienti�c hypotheses
do not, by themselves, yield probabilistic pre-
dictions about the data. Consequently, their
evaluation under likelihood requires addi-
tional probabilistic assumptions, which are
collectively termed the model.

In the case of phylogenetic inference under
likelihood, the hypothesis is a tree, the spe-
ci�c topology of which is a hypothesis about
the relationships among taxa (in addition, its
general branching form is a model of the evo-
lutionary process). The model is a probabilis-
tic description of the evolutionary process or
processes that generated the data, including
both asetof parametersand estimates of their

speci�c values. Likelihood itself should not
be confused with any speci�c probabilistic
model or set of such models. The former is a
general statistical concept that can be used to
evaluate many different methods and their
underlying models, including cladistic par-
simony (see below).

The generality of the principle of parsi-
mony, as well as the distinction between the
principle of parsimony and the method of
cladistic parsimony, can be illustrated by ap-
plying the principle of parsimony in the con-
text of likelihood—speci�cally, to the eval-
uation of alternative phylogenetic models.
In a phylogenetic likelihood analysis, a re-
searcher often wishes to know whether in-
corporating a speci�c parameter increases
the explanatory power of the probabilis-
tic model. For example, one might wish to
evaluate the explanatory power of a model
in which substitutions among all classes of
DNA base pairs have equal probabilities—
the Jukes–Cantor (one-parameter) model
(Jukes and Cantor, 1969)—relative to that of a
model in which transitions and transversions
are allowed to have different probabilities—
the Kimura (two-parameter) model (Kimura,
1980). If the different models explain the
data equally well (i.e., yield identical like-
lihood scores), the principle of parsimony
dictates that the simpler model (i.e., the one
with fewer parameters) is to be preferred be-
cause it does not multiply parameters be-
yond necessity. In practice, likelihood scores
are rarely identical, so the more complex
model is usually adopted when it results in
a signi�cant improvement in the likelihood
score, as judged by a test of statistical signi�-
cance (e.g., Navidi et al., 1991; Swofford et al.,
1996). In any case, the principle of parsimony
is suf�ciently general that it can be applied
in the context of likelihood.

The generality of likelihood can likewise
be illustrated by applying its general statis-
tical perspective to other methods, includ-
ing those of cladistic parsimony. Any use of
likelihood, including its application to the
problem of phylogeny reconstruction, is nec-
essarily based on a probabilistic model. Phy-
logenetic methods that were not developed
in the context of likelihood—such as parsi-
mony (but see Edwards, 1996), compatibil-
ity, and phenetic clustering—are not based
on such models, at least not explicitly. Nev-
ertheless, any method can be interpreted
in the context of likelihood by determining
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the conditions under which it will corre-
spond to, in the sense of giving the same re-
sults as, a maximum likelihood method (e.g.,
Farris, 1973; Felsenstein, 1981). The reason for
performing this exercise is togain insight into
the assumptions implicit in the use of meth-
ods that were not developed, but which one
wishes to interpret, in a statistical context.
This understanding in turn provides insight
into the conditions under which a method
may fail to reconstruct phylogeny correctly.
One of the great bene�ts of adopting the
general statistical perspective of likelihood
is that it forces the researcher to consider an-
alytical methods in terms of explicit models
and thus to confront the implicit assumptions
as well as the limitations of those methods.

THE PHILOSOPHY OF KARL POPPER

Philosophically oriented criticisms of like-
lihood as an approach to phylogenetic in-
ference (e.g., Siddall and Kluge, 1997; see
also Kluge, 1997a,b) have adopted the char-
acterization of science developed by Karl
R. Popper (1902–1994) as an epistemologi-
cal context. Speci�cally, they have proposed
that likelihood is incompatible with Popper’s
(e.g., 1959, 1962, 1983) ideas about scien-
ti�c corroboration. Thus, according to Siddall
and Kluge (1997:329) , “likelihood denies cor-
roboration.” In this section we argue that
these criticisms are misguided. Likelihood is
not only consistent with Popper’s concept
of corroboration, it is also, as is evident in
Popper’s own writings, the foundation
of Popper’s concept. Nevertheless, we note
that Popper did not end the centuries-old
debate over epistemology, and that not all
subsequent philosophers have endorsed his
characterization of science (for examples of
critiques and alternatives to corroboration
see Putnam, 1974; Salmon, 1988; Howson and
Urbach, 1989). Our purpose is not to promote
Popper’s philosophy as the basis for evalu-
ating phylogenetic methods. Instead, we in-
tend merely to show that Popper’s philos-
ophy has been misrepresented in attempts
to criticize likelihood and that likelihood is
well-justi�ed even according to the philo-
sophical criteria adopted by its critics who
favor cladistic parsimony.

Popper’s Corroboration

Popper (1959, 1962, 1983) developed a con-
cept that he termed degree of corroboration,

the purpose of which was to compare ri-
val theories in light of empirical evidence—
that is, “to grade hypotheses according to
the tests passed by them”(Popper, 1983:220).
He de�ned that concept using the following
expression:

C(h, e, b) D
p(e , hb) ¡ p(e , b)

p(e , hb) ¡ p(eh, b) C p(e , b)
(2)

where p D probability, h D hypothesis (the
hypothesis being evaluated), e D evidence
(the results of a particular test or tests), b D
background knowledge (those theories that
one accepts for the purpose of conducting a
test), hb refers to the conjunction of h and
b, and the term p(e , hb), for example, is a
conditional probability read as “the probabil-
ity of the evidence given the hypothesis and
the background knowledge.” Again, we will
hereafter use “j” in place of Popper’s com-
mas to denote “given” in these conditional
probabilities.

According to Popper (1983:240) , the nu-
merator in this expression “has a clear and
simple intuitive signi�cance”—that is, the
probability of the evidence given the hy-
pothesis and the background knowledge mi-
nus the probability of the evidence given
the background knowledge alone. In con-
trast, “The denominator . . . has no such sig-
ni�cance; it is chosen merely because it leads
to satisfactory results—it removes : : : blem-
ishes : : : —and because it seems to be the sim-
plest normalization factor to lead to these re-
sults” (Popper, 1983:240). Speci�cally, it was
chosen so that C(h, e , b) D ¡1 if e falsi�es h in
the presence of b (Popper, 1983:242). With or
without the normalization factor, values for
C are positive (with a maximum of C1) when
the evidence supports the hypothesis; they
are negative when the evidence undermines
the hypothesis; and when the evidence has
no bearing on the hypothesis, C D 0 (Popper,
1983:241).

Corroboration and Likelihood

Popper’s views on likelihood.—Although Sid-
dall and Kluge (1997) stated that likelihood
is incompatible with Popper’s corroboration,
they did not mention that Popper himself
made explicit statements about the relation-
ship between corroboration and likelihood.
Unlike Siddall and Kluge, Popper did not
perceive any fundamental incompatibility
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between corroboration and likelihood. On
the contrary, he viewed the two concepts as
being very similar. Thus, according toPopper
(1959:388; see also 1983:252), “both, my
‘corroboration’ and Fisher’s likelihood, are
intended to measure the acceptability of the
hypothesis.” Moreover, corroboration, ac-
cording to Popper (1959:414) , is “a generaliza-
tion of Fisher’s likelihood function.” A similar
view was expressed by Edwards (1972:211),
an advocate of likelihood, who stated that
“the Method of [likelihood] is not greatly at
variance with the views of Popper [1959],
whose book would be a starting point in any
attempt to relate the Method to awider �eld.”

The discrepancy between Popper’s views
on likelihood and those of Siddall and
Kluge (1997) centers around what Popper
(1983:217) called a “mistaken solution to the
problem of induction.” According to Popper
(1983:217) , who followed Hume, the “prob-
lem of induction : : : arises from the fact that
inductive inferences are not valid,” which is to
say that no number of speci�c observations
can establish the truth of a general hypothe-
sis. And a mistaken solution to the problem
of induction is “the view that although in-
duction is unable to establish an induced hy-
pothesis with certainty, it is able to do the next
best thing: it can attribute to the induced hy-
pothesis some degree of probability” (Popper,
1983:217).

Siddall and Kluge (1997:314) hold the erro-
neous belief that likelihood suffers from this
mistaken solution to the problem of induc-
tion. On the contrary, likelihood has no such
problem. In Popper’s own words:

the problem of induction : : : consists in determin-
ing the value of r in p(h,e) D r : that is to say, the value
of the probability of the induced hypothesis h given
the evidence e (Popper, 1983:218) .

However:

Degree of corroboration is not a probability; that is
to say, it does not satisfy the rules of the calculus of
probability.8 8The same holds true even for l(h,e), the
‘likelihood of h’ in Fisher’s sense, de�ned by l(h,e) D
p(e,h); for even though it is a probability, it is not one of
h (Popper, 1983:243; the second sentence is a footnote).

The point is that the mistaken solution to
the problem of induction involves assigning
probabilities to hypotheses, but likelihood
does not assign probabilities to hypotheses.
Likelihood is not the probability of the hy-
pothesis given the evidence but the proba-
bility of the evidence given the hypothesis.

The view that the appropriate criterion for
judging the relative merits of rival hypothe-
ses is something other than the probability
of those hypotheses is re�ected in the terms
chosen by both Popper and Fisher to describe
that criterion—that is, “corroboration” and
“likelihood,” respectively. Thus, as stated by
Popper:

I introduced the terms ‘corroboration’ : : : and : : : ‘de-
gree of corroboration’ . . . because I wanted a neutral term
to describe the degree to which a hypothesis has
stood up to severe tests, and thus ‘proved its mettle’.
By ‘neutral’ I mean a term not prejudging the issue
whether, by standing up to tests, the hypothesis be-
comes ‘more probable,’ in the sense of the probability
calculus (Popper, 1959:251) .

And in the case of Fisher:

What has now appeared is that the mathematical con-
cept of probability is, in most cases, inadequate to ex-
press our mental con�dence or dif�dence in making
such inferences, and that the mathematical quantity
which appears to be appropriate for measuring our
order of preference among different possible popula-
tions does not in fact obey the laws of probability. To
distinguish it from probability, I have used the term
‘Likelihood’ to designate this quantity (Fisher, 1946:10).

Thus, Fisher’s likelihood and Popper’s
corroboration re�ect similar views on the
evaluation of rival scienti�c hypotheses.
Siddall and Kluge’s (1997) erroneous impli-
cation that likelihood is incompatible with
corroboration stems from their failure to dis-
tinguish between probability in general and
the probability of a hypothesis. Only meth-
ods that attempt to assign probabilities to
hypotheses are compromise by what Popper
called a mistaken solution to the problem of
induction, and likelihood is not one of those
methods.

The relationship between corroboration and
likelihood.—The similarity between Fisher’s
likelihood and Popper’s corroboration ex-
tends well beyond the fact that neither
attempts to assign probabilities to hypothe-
ses. Another similarity is that both likeli-
hood and corroboration are based on the gen-
eral concept of probability (e.g., Edwards,
1972:9; Popper, 1959:388; 1983:233, 238; see
also Carpenter et al., 1998). The probabilistic
basis of both concepts can readily be seen by
examining the expressions used to describe
those concepts (Eqs. 1 and 2 above): In both
expressions, every term in the de�ning for-
mula (de�niens) is a conditional probability.

In the case of likelihood, a probabilistic ba-
sis is not disputed, but corroboration also has
an explicit probabilistic basis (see also Farris,
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1995; Carpenter et al., 1998). Thus, in his
derivation of the corroboration expression,
Popper (1983) stated, “our de�nition of de-
gree of corroboration will be put in the more
familiar terms of probability . . . the de�niens
will be a function of probabilities” (p. 233),
and “[w]e therefore need the calculus of
probability [to de�ne the concept of corrobo-
ration]; and we shall write p(a, b) D r , which
is to be read: ‘The probability of a , given b,
equals r ’” (p. 238). That degree of corrobora-
tion is not itself a probability refers to the fact
that, despite being based on probabilities, it
does not obey the laws of probability (analo-
gously, the consistency index [Kluge and Far-
ris, 1969], despite being based on length, is
not itself a length).

Siddall and Kluge (1997) suggest that
the probability term in the likelihood ex-
pression is of a different kind than are
those in the corroboration expression. Specif-
ically, they distinguish between “the calculus
of frequency probability typi�ed by Bayes’
Theorem [which they associate with likeli-
hood] . . . and . . . logical probability exempli-
�ed in Popper’s (1983) degree of corrobo-
ration” (Siddall and Kluge, 1997: 313). This
statement misleadingly associates Popper’s
corroboration with a particular interpreta-
tion of the concept of probability.

As noted by Popper (1959, 1983), proba-
bilities can be interpreted in several ways:
as numerical frequencies (number x out of
y in the limit of y; e.g., Von Mises, 1928), as
subjective degrees of belief (e.g., De Finetti,
1931), as propensities (inherent tendency of
an event to occur; e.g., Popper, 1983), or as de-
grees of a logical relationship between state-
ments (e.g., Keynes, 1921). Popper explic-
itly intended for any of these interpretations
to be applicable to the probability terms in
his corroboration equation. Thus, “It is de-
sirable to construct a system of axioms . . . in
which ‘p(x1, x2)’ [read ‘the probability of x1
with regard to x2’] . . . is constructed in such a
way that it can be equally interpreted by any
of the proposed interpretations” (Popper,
1959:320). “In L.Sc.D. [The Logic of Scienti�c
Discovery] (Appendix *iv) I gave a num-
ber of axiom systems for the formal calcu-
lus of probability (one of whose interpreta-
tions is the logical interpretation)” (Popper,
1983:218). And, “I propose to use the word
‘probability’ here, and in other places, for
all and only those meanings that satisfy the
well known mathematical calculus of probabil-

ities” (Popper, 1983:282). Moreover, Popper
(1959:119) noted that “numerical probabil-
ity can be linked with logical probability : : :
It is possible to interpret numerical proba-
bility as applying to a subsequence (picked
out from the logical probability relation) for
which a system of measurement can be de-
�ned, on the basis of frequency estimates.”
Thus, contrary to the view of Siddall and
Kluge (1997), according to Popper himself,
the frequency interpretation of probabilities
is fully compatible with his corroboration
equation.

The similarities between likelihood and
corroboration extend further still, for not
only are both concepts based on probabil-
ities (however interpreted), both are based
on the probability of the same thing—that is,
the probability of the evidence (e) rather than
that of the hypothesis (h). In other words, the
conceptual basis of likelihood and corrobora-
tion is identical, or more to the point, corrob-
oration is based on likelihood. In Popper’s
own words:

I soon found that, in order to de�ne C(x,y)—the de-
gree of corroboration of the theory x by the evidence
y—I had to operate with some converse p(y,x), called
by Fisher the ‘likelihood of x’ (Popper, 1959:388; see
also 1983:252) .

Comparing the de�ning formulas of the
likelihood (eq. 1) and corroboration (eq. 2) ex-
pressions reveals how corroboration is based
on likelihood. The de�ning formula in the
likelihood expression is p(e j h), the proba-
bility of the evidence given the hypothesis.
The de�ning formula in the corroboration
expression is more complex, consisting of
�ve probabilities, two in the numerator and
three in the denominator. As noted above,
however, the denominator in the corrobora-
tion expression is merely a “normalization
factor,” which was chosen so that C D ¡1,
rather than 0, when e falsi�es h (Popper,
1983:242). Thus, the numerator, p(e j hb) ¡
p(e j b), is the crux of corroboration (Popper,
1983:240). It differs from likelihood in the
recognition of adistinct term for what Popper
called the “background knowledge,” b: b
refers to “assumptions” (Popper, 1962:238),
to “theories not under test” (1983:252) , to
other hypotheses that we treat as “unprob-
lematic” (1962:238; 1983:188)—to hypotheses
that we “accept—perhaps only tentatively—
while we are testing h” (1983:236) . How-
ever, if b designates a hypothesis (theory)
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or hypotheses, even if treated as unproblem-
atic, then both of the terms in the numerator
of the corroboration expression— p(e j hb)
and p(e j b)—are likelihoods. Corroboration,
then, is the normalized difference between
two likelihoods.

Considering the differences between the
corroboration and likelihood expressions
provides further insights into the rela-
tionship between the two concepts. The
corroboration expression includes separate
terms for the hypothesis being tested (h)
and the other propositions (hypotheses,
assumptions) needed for calculating the
probability of the evidence, that is, the back-
ground knowledge, b. In contrast, the
likelihood expression does not include a
term for the background knowledge, which
corresponds with the model of likelihood.
As evidence of this correspondence, com-
pare Popper’s (1983:244) characterization
of the background knowledge— “knowl-
edge which, by common agreement, is not
questioned while testing the theory un-
der investigation”—with Edwards’s (1972:3)
characterization of the model as “that part
of the description [of the phenomenon re-
sponsible for generating the observations]
which is not at present in question, and may
be regarded as given.” Because the likeli-
hood expression does not contain a term for
the model (background knowledge), but the
model is necessary for calculating the proba-
bility of the evidence given the hypothesis,
the term p(e j hb) of the corroboration ex-
pression is equivalent to p(e j h) of the like-
lihood expression. This conclusion is con-
�rmed by Popper’s (1959:413) statement that
when p(e j b) is very small, and thus p(e j hb)
¡ p(e j b) ¼ p(e j hb), “it will . . . be possible
to accept Fisher’s likelihood function as an
adequate measure of degree of corrobora-
tion.”Therefore, the main difference between
the two expressions is the presence of the
term p(e j b) in the corroboration expression.

Popper introduced the term p(e j b) in the
context of his observation that “if e should
be probable, in the presence of b alone (‘prob-
able’ in the sense of the probability calculus),
then its occurrence can hardly be considered
as signi�cant support of h” (1983:237). For a
hypothesis to be corroborated by a particu-
lar body of evidence, p(e j hb), the probabil-
ity of the evidence given the hypothesis and
the background knowledge, must be greater
than p(e j b), the probability of the evidence

given the background knowledge alone. The
likelihood expression does not explicitly ad-
dress this issue—that is, the probability of the
evidence given the hypothesis and the back-
ground knowledge in relation to the proba-
bility of the evidence given the background
knowledge alone; however, we will argue in
the next section that for standard phyloge-
netic analyses, whether under parsimony or
likelihood, the term p(e j b) can effectively be
ignored (see also Appendix).

CORROBORATION AND PHYLOGENETIC
INFERENCE

In this section we apply Popper’s concept
of corroboration to the problem of phyloge-
netic inference. First, we take the basic com-
ponents of the corroboration expression, as
well as the conditional probabilities based on
them, and identify the corresponding com-
ponents in a phylogenetic study. We then
examine parsimony and likelihood meth-
ods of phylogenetic inference in the con-
text of this analysis. We show that for the
evaluation of rival phylogenetic hypotheses,
likelihood methods �t easily into the con-
text of corroboration. We argue that parsi-
mony methods �t into that context as well,
but only if they are interpreted as carry-
ing implicit probabilistic assumptions. We
then analyze Kluge’s (1997a) claims about
the assumptions of cladistic parsimony and
explain why descent with modi�cation is in-
suf�cient background knowledge for phylo-
genetic inference as an example of Popper’s
corroboration. Finally, we extend our analy-
sis of corroboration to consider the evalua-
tion of models (assumptions), showing how
the likelihood approach to phylogenetic in-
ference is concordant with Popper’s views
on the provisional nature of background
knowledge.

Evaluation of Alternative Phylogenetic Trees

Let us �rst consider the evaluation of alter-
native phylogenetic trees using a single phy-
logenetic method—for example, likelihood
under a particular probabilistic model or par-
simony under a particular weighting scheme
(including equal weights). For the sake of
simplicity, we will restrict our considerations
to data taking the form of discrete characters.
The basic components of the corroboration
expression (Eq. 2) are the evidence (e), the hy-
pothesis (h), and the background knowledge
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(b). In a phylogenetic analysis, whether un-
der parsimony or likelihood, the evidence (e)
consists of the observed character states and
their occurrences in particular taxa. The hy-
pothesis (h) is a tree—that is, a topology. Pop-
per’s corroboration is used to compare rival
hypotheses according to the results of their
tests. Therefore, when performing a phylo-
genetic analysis in this context, each tree is
a rival hypothesis, and the problem is to de-
termine the degree of corroboration, C , for
each tree—that is, C1, C2, C3, . . . Cn for h1,
h2, h3, . . . hn.

The background knowledge (b) consists of
hypotheses that are necessary for a partic-
ular test or analysis but are not questioned
while conducting that analysis (i.e., assump-
tions; see The relationship between corrobora-
tion and likelihood). In a phylogenetic analy-
sis, these hypotheses include the basic axiom
of descent with modi�cation as well as any
other propositions that are held constant in
the analysis, including the assumption that
the relationships in question conform to a
tree-like pattern (given that the analysis is
so constrained) and whatever assumptions
are implied by using a particular method
to evaluate alternative trees (minimally, the
assumption that the method of choice pro-
vides a suitable means for reconstructing
phylogeny). The method includes both an
optimality criterion (e.g., parsimony, likeli-
hood) and various propositions concerning
character transformation (e.g., character state
order, character and state weights, transfor-
mation probabilities, among-site rate varia-
tion) and forms a critical part of the back-
ground knowledge. The reason is that the
method provides the basis for selecting a pre-
ferred tree or trees and implies that this tree
is the most highly corroborated by the data
(i.e., has the highest positive value of C).

When alternative trees are compared using
a single analytical method—whether parsi-
mony under a particular weighting scheme
or likelihood under a particular probabilistic
model—all trees are evaluated under the
same set of assumptions. In other words, the
background knowledge (b) is held constant.
Because alternative trees are evaluated by
using the same data, the evidence (e) is also
constant. Therefore, p(e j b) is constant, and
the problem of determining the relative de-
gree of corroboration, C , for each member of
a set of alternatives trees (h1, h2, h3, : : : hn)
reduces to determining the value of p(e j hb)

for each alternative tree (see Appendix for
a more detailed discussion of why p(e j b)
is ignored). However, as we argued above,
p(e j hb) of the corroboration expression
is equivalent to p(e j h) of the likelihood
expression. Therefore, when evaluating
alternative trees with a single phyloge-
netic method, the problem of comparing
alternative trees in terms of their degree
of corroboration reduces to comparing the
likelihoods of the alternative trees.

Thus, contrary to the view of Siddall and
Kluge (1997), the application of likelihood to
problems of phylogenetic inference is fully
compatible with Popper’s concept of corrob-
oration. Indeed, there seems to be no dif-
ference between determining the degree of
corroboration (C ) of alternative trees and de-
termining their likelihoods (L). Moreover,
under likelihood, comparing alternative
trees in terms of their degree of corrobo-
ration has a clear meaning and an explicit
basis. Because Popper’s concept of cor-
roboration is based on probabilities—most
notably p(e j hb), the probability of the
data given a particular tree and phyloge-
netic method—probabilistic assumptions are
needed to calculate the degree of corrobora-
tion (C). This demand is met by the explicit
probabilistic models integral to any phyloge-
netic analysis that uses likelihood.

In contrast with the clear conformity
of phylogenetic likelihood methods with
Popper’s concept of corroboration, the com-
patibility of cladistic parsimony methods
with Popper’s corroboration is not obvious.
Unlike likelihood methods, parsimony meth-
ods are not based on explicit probabilistic
models, and thus they provide no basis for
translating the minimum number of charac-
ter transformations required by a tree into
the probability of the observed distribution
of character states among taxa given that
tree. Therefore, demonstrating a connection
between cladistic parsimony and Popper’s
corroboration simply by identifying the com-
ponents of a parsimony analysis that corre-
spond with e (the observed distribution of
character states among taxa), h (a tree topol-
ogy) and b (a parsimony method), as we have
done for likelihood methods, is not possible.

Siddall and Kluge (1997), who assert that
“cladistic parsimony does not assume a pro-
cess model” (p. 326), attempt to solve this
problem by interpreting the probabilities
of the corroboration expression as logical
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probabilities. They state, “Cladistic parsi-
mony denies frequency probabilism” (p. 329)
and propose instead that the parsimony
method makes use of “logical probabil-
ity regarding corroboration in historical in-
ference” (p. 333). Their statements imply
that cladistic parsimony is associated with
the logical interpretation of probabilities,
which somehow enables them to calculate
C without postulating explicit probabilities.
Siddall and Kluge do not explain how this
calculation is to be accomplished; regard-
less, their position is contradicted by Pop-
per’s views. Popper was clear in stating that
“there cannot be a metric of logical probability
which is based upon purely logical considera-
tions” (Popper, 1959:404) and “Only from
probability estimates can probabilities be cal-
culated” (1959:247) .

There is nothing special about cladis-
tic parsimony that excuses it from this re-
quirement. Without invoking probabilistic
assumptions, a cladistic parsimony analy-
sis contains insuf�cient information to de-
termine p(e j hb), the probability of the ob-
served character state distributions given
a tree and the parsimony method. One
can interpret the lengths of alternative
trees as indicative of relative degree of
corroboration—that is, one can consider the
most-parsimonious tree to have the great-
est value of C and thus also of p(e j hb).
For example, according to Kluge (1997b:350;
see also Farris, 1995), “in strictly Poppe-
rian terms, most parsimonious cladograms
are most explanatory because both C and S
[severity of a test] increase with p(e, hb), a
term that occurs in their shared numerator.”
Kluge’s statement is ironic given his antipa-
thy toward likelihood methods of phyloge-
netic inference, for as we argued above, p(e j
hb) of the corroboration expression is equiv-
alent to p(e j h) of the likelihood expres-
sion. Therefore, according to Kluge, most-
parsimonious cladograms are most explana-
tory because they maximize p(e j h)—that is,
because they maximize likelihood! In any
case, without invoking probabilistic assump-
tions, equating tree length with degree of cor-
roboration begs the question by avoiding the
actual calculation of p(e j hb) and assuming
a one-to-one correspondence between that
quantity and tree length. To assign actual val-
ues to p(e j hb) and thus C, one must identify
explicit probabilistic propositions—be they
logical, statistical, or otherwise—associated

with the parsimony method (see Critique of
Kluge [1997a], below). If parsimony analyses
are not at least implicitly based on such prob-
abilistic assumptions, then they cannot be ex-
amples of Popperian corroboration.

In sum, probabilistic assumptions are nec-
essary to determine p(e j hb), and any at-
tempt to justify cladistic parsimony in terms
of Popperian corroboration requires that
those methods be interpreted as invoking im-
plicit probabilistic assumptions (see below).
An analysis of the precise natureof the proba-
bilistic assumptions inherent to the interpre-
tation of parsimony as a method for assessing
the degree of corroboration (i.e., likelihood)
of alternative trees is beyond the scope of
the present paper (for such analyses see Far-
ris, 1973; Felsenstein, 1973, 1981; Goldman,
1990; Tuf�ey and Steel, 1997). But regardless
of the precise nature of those assumptions,
parsimony methods can be reconciled with
Popper’s concept of corroboration only by
invoking probabilistic assumptions.

Critique of Kluge (1997a)

Our conclusions about the implications of
Popperian corroboration for cladistic parsi-
mony contradict those of Kluge (1997a; see
also Siddall and Kluge, 1997), who claimed
that parsimony methods are justi�ed by Pop-
perian corroboration but argued that descent
with modi�cation is suf�cient background
knowledge for phylogenetic inference under
parsimony—in other words, that additional
probabilistic assumptions are unnecessary.
According to Kluge (1997a:88) :

Given only descent with modi�cation as the back-
ground knowledge, synapomorphies characteris-
tic of (A,B), (A,C), and (B,C) should be equally
likely . . . However, if a large majority of one class of
those possible synapomorphies were to be discov-
ered, say that which characterizes hypothesis (A,B),
then this is unlikely given the background knowledge
alone, but not under the background knowledge plus
the postulated rooted (A,B)C cladogram. The (A,B)C
cladogram is said to be corroborated to the degree to
which those (A,B) synapomorphies are observed.

In other words, according to Kluge, a large
majority of characters exhibiting the pattern
110 for taxa ABC has a low probability
given the background knowledge of descent
with modi�cation alone, so p(e j b) is small;
that same preponderance of characters
has the highest probability given the same
background knowledge plus the rooted
topology (AB)C, so p(e j hb) is maximally
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large (i.e., relative to alternative topologies).
If so, then p(e j hb)¡p(e j b) has the largest
positive value for the topology (AB)C, which
is therefore the most highly corroborated
hypothesis.

Kluge’s reasoning is �awed. Given de-
scent with modi�cation alone, nothing can
be inferred about the probabilities of the dif-
ferent possible character patterns for three
taxa (i.e., 000, 100, 010, 001, 110, 101, 011,
111). Determining the probabilities of differ-
ent character patterns requires postulation
of a probability distribution or a process for
generating such a distribution (see Popper,
1959:208, 247). However, the assumption of
descent with modi�cation alone provides
neither. If no probability distribution or gen-
erating process is speci�ed, then no distribu-
tion of states is any more or less likely than
any other, and this is true even with the addi-
tional assumption of a tree-like model of de-
scent. Consequently, Kluge’s statement that
certain character patterns should be equally
likely, given only the assumption of descent
with modi�cation, has no basis. Instead, the
statement itself is an additional and unjusti-
�ed probabilistic assumption.

Let us consider biological assumptions
that could be incorporated into the back-
ground knowledge to allow us to conclude
that the character patterns 110, 101, and
011 are equally probable. One possibility is
the assumption of a rooted star topology
(trichotomy) combined with that of equal
(and non-zero) probabilities of change for
every character on every branch. Alterna-
tively, equal probabilities for the alternative
character patterns can be inferred without
assuming a particular topology by assuming
that the probabilities of change for every
character on every branch are suf�ciently
high that the data are effectively random-
ized. An assumption of this sort underlies
the permutation tail probability (PTP) test
of Faith and Cranston (1991), which creates
permuted data sets with equal probabil-
ities for the different character patterns
by randomization and uses these to test a
null hypothesis of no hierarchical structure
in the observed (unpermuted) data. In
any case, additional assumptions (beyond
descent with modi�cation) are needed to
reach the conclusion that certain character
patterns are equally probable, and those
assumptions are necessarily probabilistic.
As stated by Popper (1959:247), “Frequency

statements . . . need their own assumptions
which must be speci�cally statistical.”

As a consequence, and contrary to Kluge’s
(1997a) position, additional probabilistic as-
sumptions are also necessary to infer that
a preponderance of characters exhibiting a
particular pattern (e.g., 110) has the highest
probability on one of the three, rooted, bi-
furcating, three-taxon topologies—in other
words, that p(e j hb) (and thus C) is maxi-
mal for one of the three topologies. Following
Kluge (1997a:87) , we will use 0 to designate
an ancestral state and 1 to designate a derived
state, so that the hypothetical ancestor at the
root of the tree has all characters with state
0. Suppose also that the evidence (e) exhibits
a preponderance of characters with the 110
pattern in taxa ABC relative to those with the
patterns 101 and 011, as in Kluge’s example.
Without invoking additional probabilistic as-
sumptions, it would be incorrect to conclude
that characters with the pattern 110 have the
highest probability for the topology (AB)C.
The reason is that the probability of the pat-
tern 110 is greater on one (or both) of the alter-
native topologies than on the (AB)C topology
for certain patterns of inequality in the prob-
abilities of change among branches (Fig. 1).

Given Kluge’s (e.g., 1997b) preference
for cladistic parsimony with all characters
equally weighted, the probabilistic assump-
tions necessary to arrive at his conclusion
are, not surprisingly, those that have been
identi�ed in likelihood models approximat-
ing his preferred method. One possibility is
that the probability of change is the same
for every character (i.e., equal weighting) on
every branch (e.g., Farris, 1973; Felsenstein,
1983; Goldman, 1990). It also seems neces-
sary to assume that the probability (rate) of
character change does not exceed a certain
limit. If the probability of change is suf�-
ciently great that the data are effectively ran-
domized, a large majority of 110 characters
has a low and equal probability on all of
the alternative trees. Another possibility is
that the probabilities of change on the var-
ious branches are estimated separately for
each character—in other words, an assump-
tion that the probability of change for a given
character on a given branch is not related to
the probability of change for other characters
on that branch (Tuf�ey and Steel, 1997). Un-
der either set of probabilistic assumptions,
characters exhibiting the pattern 110 have the
highest probability for the (AB)C topology.
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FIGURE 1. Example illustrating that the occurrence of
a derived state (1) in two taxa (A and B) but not a third
(C) does not necessarily have the highest probability on a
tree in which the two taxa that share the derived state are
sister groups (after Felsenstein, 1978). (a) If taxa B and C
are sister groups, and the probabilities of change on the
common ancestral BC branch and the C branch are low
but the probabilities of change on the A and B branches
are high, then the probability of observing the derived
state in taxaA and B (as the result ofconvergence) but not
in C is relatively high because the probability of the 0 !
1 change occurring is high for both the A and B branches
and low for both the BC and C branches. (b) If taxa A
and B are sister groups, and the probabilities of change
on the common ancestral AB branch and the A branch
are low but the probabilities of change on the C and
B branches are high, then the probability of observing a
derived state in taxa A and B (as the result of inheritance
from a common ancestor) is relatively low because the
probability of the 0 ! 1 change occurring is low for the
common ancestral AB branch, and even if it happens,
the probability of reversal to 0 is high for the B branch.
Thus, the character pattern 110 for taxa ABC has a higher
probability on at least some trees in which taxa C and
B are sisters (a) than it does on at least some trees in
which A and B are sisters (b). Lengths of branches are
proportional to the probabilities of change.

The point is, assumptions in addition to that
of descent with modi�cation are required to
reach the conclusion that a particular charac-
ter pattern has the highest probability on a
particular topology, and those assumptions
are necessarily probabilistic.

Thus, contrary to the conclusion of Kluge
(1997a; see also Siddall and Kluge, 1997), de-
scent with modi�cation by itself does not
constitute suf�cient background knowledge
for phylogeny reconstruction as an example
of Popperian corroboration. Assessing the
degree of corroboration for alternative trees
requires calculating the probability of the ev-
idence given each tree and the background
knowledge, p(e j hb), but the assumption of
descent with modi�cation (together with a
tree) contains no information from which this
probability can be calculated. If no proba-
bilistic assumptions are invoked, then no set
of character patterns (e) can be inferred to be
more or less probable on any topology, and
thus there is no basis for selecting a most cor-
roborated tree. Assessing the degree of cor-
roboration for alternative trees requires addi-
tional assumptions, and those assumptions
must be probabilistic in nature.

Evaluation of Alternative Phylogenetic
Methods or Models

So far, we have considered phylogenetic
analysis under a single method or model. In
such cases, the method or model and its im-
plicit or explicit assumptions are held con-
stant and thus form part of the background
knowledge. As described by Siddall and
Kluge (1997:23), “Background knowledge is,
by de�nition (Popper, 1963), unproblematic.
It is something we can assume as holding
‘true’ while we conduct our test.” But ac-
cording to Popper (1962:238) , “Few parts of
the background knowledge will appear to
us in all contexts absolutely unproblematic,
and any particular part of it may be chal-
lenged at any time, especially if we suspect
that its uncritical acceptance may be respon-
sible for some of our dif�culties” (see also
Popper, 1983:188). The provisional nature of
background knowledge described by Popper
allows phylogeneticists to evaluate not only
alternative topologies but also alternative
phylogenetic methods or models in terms of
degree of corroboration. Once again, in terms
of compatibility with Popper’s views, the
likelihood approach to phylogenetic infer-
ence compares favorably with cladistic par-
simony as interpreted and practiced by ad-
vocates of those methods.

When evaluating alternative phylogenetic
methods or models according to their de-
gree of corroboration, the methods or models
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are treated as part of the hypothesis (h) rather
than the background knowledge (b). The
topology can be allowed to vary, in which
case it also forms part of the hypothesis. Al-
ternatively, the methods or models can be
evaluated on a single topology, in which case
the topology forms part of the background
knowledge. In either case, the background
knowledge (b) consists of whichever propo-
sitions (components, parameters) are com-
mon to the alternative methods or models
and is therefore held constant. Given that the
methods or models are to be evaluated in
terms of their ability to explain the same set
of observations, the evidence (e) is also con-
stant. If b and e are constant, then p(e j b)
is constant, and the problem reduces once
again to determining the value of p(e j hb)
for each member of a set of alternative hy-
potheses (h1, h2, h3, : : : hn). In this case, how-
ever, the alternative hypotheses are (or at
least include) the components or parameters
that differ among the alternative methods or
models.

The likelihood approach to phylogenetic
inference is fully compatible with the use of
Popper’s degree of corroboration to evalu-
ate various components of the background
knowledge. As just noted, comparing differ-
ent phylogenetic models in terms of their de-
gree of corroboration reduces to determin-
ing the value of p(e j hb) for each model, but
p(e j hb) of the corroboration expression is
the same thing as p(e j h) of the likelihood
expression (see The relationship between corrob-
oration and likelihood). Therefore, determin-
ing the degree of corroboration for different
models is the same thing as determining
their likelihoods. Moreover, evaluating alter-
native models—that is, evaluating hypothe-
ses that in other situations form part of the
background knowledge—is consonant with
Popper’s view that any part of the back-
ground knowledge may be challenged at any
time. Similar views have been expressed by
advocates of likelihood. For example, com-
pare the quotation from Popper (1962) in
the �rst paragraph of this section with the
following statement by Edwards (1972:4):
“There is no absolute distinction between the
two parts of a statistical description, for what
is on one occasion regarded as given, and
hence part of the model, may, on another oc-
casion, be a matter for dispute, and hence
part of a hypothesis.” Finally, different like-
lihood models—for example, those that dif-

fer with respect to incorporation of a speci�c
model parameter—are commonly evaluated
in termsof their degree ofcorroboration (like-
lihood) (e.g., Goldman, 1993a,b; Yang, 1994,
1996; Cunningham et al., 1998). The ability to
evaluate alternative models enables investi-
gators to tailor their analyses to individual
data sets as well as testhypotheses about evo-
lutionary processes by incorporating them
as model parameters (reviewed by Huelsen-
beck and Rannala, 1997).

Parsimony methods are more dif�cult to
reconcile with Popper’s views on corrob-
oration and background knowledge. Even
if interpreted as invoking implicit proba-
bilistic assumptions, so that they are consis-
tent with Popper’s corroboration, different
parsimony methods/models (e.g., Wagner,
Fitch, Dollo; different weighting schemes)
are rarely, if ever, compared in terms of their
degree of corroboration. Instead, the alterna-
tive methods are most commonly compared
in terms of whether they yield different opti-
mal trees, without any attempt to determine
which method is associated with the high-
est probability for the observed data. Conse-
quently, either no choice is made among al-
ternative parsimony methods, or the choice
is based on a criterion other than the degree
of corroboration.

Only Kluge (1997b) has attempted to jus-
tify a preference for one parsimony method
over another in the terms of Popperian cor-
roboration by arguing that equal weight-
ing is to be preferred because differential
weighting “adds to background knowledge”
(p. 349). The implication is that adding
to background knowledge increases p(e j
b), which decreases the difference between
p(e j hb) and p(e j b), thus lowering C .
However, if the weighting scheme is at
issue, then it is part of the hypothe-
sis (h), not of the background knowledge
(b). In other words, if character weights
are permanently relegated to the back-
ground knowledge, the possibility of test-
ing different weighting schemes in terms
of their degree of corroboration is denied.
This practice not only goes against Pop-
per’s views but is decidedly unscienti�c.
Just as with alternative tree topologies,
the relative merits of alternative weight-
ing schemes can and should be evalu-
ated empirically. Under Popperian corrob-
oration, this evaluation involves weighting
according to probabilities of change and
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determining which scheme isassociated with
the highest probability of the data. Thus,
although cladistic parsimony can be inter-
preted in a way that is compatible with
Popper’s views on corroboration and back-
ground knowledge, that interpretation is not
adopted by the very people who claim the
compatibility.

CONCLUSION

Contrary to the views of authors who have
criticized the likelihood approach to phylo-
genetic inference as being incompatible with
Karl Popper’s degree of corroboration, an ex-
amination of Popper’s own writings reveals
that the general concept of likelihood forms
the very basis of his degree of corroboration.
Consequently, it is not surprising that likeli-
hood methods of phylogenetic inference are
fully compatible with Popperian corrobora-
tion and that cladistic parsimony methods
are compatible with corroboration only if
they are interpreted as incorporating proba-
bilistic assumptions. But if parsimony meth-
ods are interpreted as incorporating proba-
bilistic assumptions, then those assumptions
constitute models that can be used in the con-
text of likelihood, and non-probabilistic im-
plementations of those methods are simply
proxies for their probabilistic counterparts.
Interpreted this way, there is no con�ict be-
tween parsimony and likelihood, because the
general statistical perspective of likelihood—
and of Popperian corroboration—subsumes
all of the individual methods and models that
can be applied within the context of that
perspective, including those of cladistic par-
simony. One of the primary advantages of
adopting this perspective is that all of the
various phylogenetic methods/models are
uni�ed under a single, general, theoretical
framework that allows phylogeneticists to
compare those methods/models directly in
terms of ability to explain data. In this con-
text, all phylogenetic methods/models are
legitimate philosophically, though all have
limitations, and some may explain the data
better than others in particular cases. But re-
gardless of the relationship between cladistic
parsimony methods and either Popper’s de-
gree of corroboration or Fisher’s likelihood,
likelihood forms the basis of Popper’s degree
of corroboration, and likelihood methods of
phylogenetic inference are fully compatible
with that concept.
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APPENDIX: ADDITIONAL
CONSIDERATIONS CONCERNING P (E j B)

Role of p(e j b) in Different Kinds
of Analyses

Our conclusion that the term p(e j b) can be ignored
in the case of standard phylogenetic analyses may seem
inconsistent with the importance that Popper attached
to this term. For Popper, p(e j b) provided the critical
difference between his concept of corroboration and
Fisher’s likelihood (e.g., Popper, 1959:413–414). It was
also crucial for assessing the severity of a test. C , with
the numerator of p(e j hb) – p(e j b), will be largest when
p(e j hb) is large and p(e j b) is small. Therefore, pro-
vided that p(e j hb) > p(e j b), then “the smaller p(e j b)
[i.e., the more improbable the evidence given the back-
ground knowledge alone] the stronger will bethe support
which e renders to h” and the more severe will be the
test (Popper, 1983:238) . Our conclusion that p(e j b) can
be ignored in the case of standard phylogenetic analyses
is in no way contradicted by these propositions. Instead,
the seeming discrepancy results from the fact that dif-
ferent kinds of analyses emphasize different aspects or
components of corroboration: (1) the evaluation of rival
hypotheses in terms of the results of a test—which is
based primarily on p(e j hb), and (2) the evaluation of
different tests in terms of their severity—which is based
primarily on p(e j b). Considering these components of
corroboration separately makes it clear why p(e j b) can
be (and is) ignored in standard phylogenetic analyses.

Standard phylogenetic analyses (i.e., those evaluat-
ing alternative trees in the context of a single data set—
even if it results from combining separately collected
bodies of data—and a single phylogenetic method), are
examples of the �rst aspect of corroboration—the com-
parison of rival hypotheses (alternative trees) in terms
of the results of a test. Because both e (the data) and
b (the analytical method) are constant across hypothe-
ses, p(e j b) is also constant; therefore, p(e j b) does not
affect the order of preference among rival trees deter-
mined by p(e j hb). Moreover, no component of such an
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analysis corresponds with the second aspect of corrobo-
ration, that is, evaluating the test in terms of its severity.
Thus, p(e j b), which measures the severity of a test, is
effectively ignored.

Popper (e.g., 1959, 1962, 1983) was concerned with
developing a general framework for evaluating diverse
scienti�c theories according to the results of their tests,
but he did not consider the case of standard phyloge-
netic analyses (most of his examples are from physics
and astronomy). In other cases, the evaluation of differ-
ent tests in terms of their severity—the second aspect
of corroboration—is important, such as when multiple
tests have been performed, particularly when those tests
involve methods based on very different assumptions
(b) and yield very different classes of observations (e).
For example, two famous tests of Einstein’s general the-
ory of relativity (one of Popper’s favorite examples) in-
volved measurements of (1) the angular de�ection of
starlight passing close to the sun (measured during an
eclipse) and (2) the reduction in the wavelength of light
emitted by massive stars. When different tests involve
very different assumptions and classes of observations,
combining the results of those tests and thus calculating
a single value for C may be impossible. Therefore, eval-
uating the relative severity of the different tests becomes
important, which is accomplished using p(e j b).

Although p(e j b) is ignored in what we have called
standard phylogenetic analyses, there are other kinds
of phylogenetic tests in which p(e j b) can be used to
evaluate severity. The most obvious example involves
the comparison of more and less general evolutionary
models, such as those describing the evolution of nu-
cleotide sequences (reviewed by Swofford et al., 1996).
In this case, the hypothesis being tested corresponds
with the parameter that distinguishes the more gen-
eral model from the less general one (e.g., base frequen-
cies, rates for different classes of substitutions). There-
fore, the less general model (i.e., the one lacking the
parameter corresponding with the hypothesis) consti-
tutes the background knowledge and can itself be used
to calculate p(e j b) for evaluating the severity of the
test. For example, the model of Jukes and Cantor (1969),
in which the substitution probabilities among all four
classes of nucleotide bases are assumed to be equal, can
be used to calculate p(e j b) for a test of the more general
model of Kimura (1980) and thus of the hypothesis that
transitions and transversions have different substitution
probabilities.

In such cases, that which constitutes a severe test, as
measured by p(e j b), corresponds with the generally
accepted proposition that, all else being equal, an
analysis based on a larger body of evidence (e.g., more
characters) constitutes a more severe test than one based
on a smaller body of evidence (e.g., fewer characters).
This conclusion is supported by Popper’s (1959:413)
statement that, in the case of statistical hypotheses, very
small p(e j b) is possible only for large samples. Thus,
just as the probability of obtaining a particular fraction
of heads in a series of coin tosses under any given
hypothesis about the coin’s bias (or lack thereof) is lower
for larger numbers of tosses, similarly the probability of
sampling particular fractions of the different possible
character patterns (i.e., state distributions among taxa)
under a given evolutionary model is lower for larger
numbers of sampled characters (Table 1). Although
systematists do not typically use p(e j b) to evaluate the
severity of their tests of evolutionary models, similar
concerns are taken into consideration using statistical

TABLE 1. Probabilities of proportionally similar bod-
ies of evidence for different amounts of data given par-
ticular hypotheses. Larger amounts of data are associ-
ated with lower probabilities of the evidence given the
hypothesis, which indicates a more severe test when
the hypothesis in question constitutes the background
knowledge. In the �rst example, involving a coin, the
probabilities are for data consisting of equal numbers of
heads and tails, given that the coin is unbiased (the hy-
pothesis for which thedatahave the highest probability).
In the second example, involving a phylogeny, the prob-
abilities are for data consisting entirely of two-state char-
acters exhibiting the pattern 1100 in taxa ABCD, given
the tree ((A,B),(C,D)) (the tree for which the data have
the highest probability) and a model that assumes equal
frequencies of states 0 and 1 and equal rates of change
among all characters. Probability values in the phyloge-
netic example were calculated from the negative ln like-
lihoods obtained using PAUP¤ version 4.0b4a (Swofford,
in prep.).

Sample Probability of
Hypothesis Size (N) Evidence the Evidence

Pheads D Ptails 2 1 Head: 1 Tail 0.500
4 2 Heads: 2 Tails 0.375

20 10 Heads: 10 Tails 0.176

Equal freqs., 2 Both 1100 6.25 £ 10¡2

Equal rates, 4 All 1100 3.91 £ 10¡3

((A,B),(C,D)) 20 All 1100 9.09 £ 10¡13

signi�cance tests, such as the likelihood ratio test (e.g.,
Goldman, 1993a, b). D. Faith (pers. comm.) interprets
likelihood ratio tests as direct measures of severity (i.e.,
p(e j b)), an interpretation with which we disagree.
In any case, signi�cance tests permit rejection of the
null hypothesis only when data that deviate from the
expectation under the null by as much or more than
the observed data have a very low probability, given
the null, which can be achieved only with a reasonable
amount of data (i.e., a suf�cient severe test). Moreover,
the power of such tests (i.e., the probability of rejecting
the null hypothesis when it is false, which is also related
to severity) increases with increasing sample size.

One might also wish to evaluate the severity of tests
in which the rival hypothesis are alternative phyloge-
netic trees. In this case, however, p(e j b) cannot be used
to evaluate severity, because the background knowledge
(method/model) cannot be separated completely from
the hypothesis (tree). Although the methods/models do
not assume any particular tree, an assumption that the
relationships of interest take the basic form of a tree is
integral to any of these methods/models. Therefore, cal-
culating either a parsimony or a likelihood score that
corresponds with the probability of the evidence given
a phylogenetic parsimony or likelihood method/model
in the absence of a tree is impossible, lending further
credence to our conclusion that p(e j b) is to be ignored
in the case of standard phylogenetic analyses. Never-
theless, one can evaluate the severity of tests using a
probability analogous to p(e j b). This evaluation can
be accomplished with a probability based on an uncon-
strained likelihood model (e.g., Goldman, 1993a) or on
the model used in the analysis in conjunction with a par-
ticular tree or set of trees. These probabilities are not to be
equated with p(e j b), meaning that they should not be
incorporated into the corroboration expression (Eq. 2),
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but they can nevertheless be used to evaluate the sever-
ity of tests. As in the case of p(e j b), these probabilities
are expected to decrease (indicating a more severe test)
with increasing amounts of data.

In summary, our conclusion that the term p(e j b)
can be ignored in the case of standard phylogenetic
analyses is fully consistent with the role of that term
in Popper’s corroboration expression. The term p(e j b)
measures one component of corroboration, the severity
of tests. Standard phylogenetic analyses are concerned
with another component of corroboration, the evalua-
tion of rival hypotheses according to the results of a
single test. No attempt is made to evaluate the sever-
ity of the test, which is the purpose of p(e j b). More-
over, because the same test is applied to all of the
alternative hypotheses, p(e j b) is constant. Finally, be-
cause the assumption of a tree is integral to phylogenetic
methods/models, p(e j b)—the probability of the evi-
dence given a phylogenetic method/model but without
a tree—cannot be calculated. Nevertheless, the severity
of tests of alternative trees can be evaluated by using
probabilities other than p(e j b).

Incidentally, the observation that p(e j b) and anal-
ogous quantities decrease with increasing sample size
indicates that a researcher who uses likelihood methods
is not simply following the “rule ‘Obtain high proba-
bilities!’” (Popper, 1983:223) , a view misleadingly asso-
ciated with likelihood by Siddall and Kluge (1997:314)
when they characterized likelihood as seeking the hy-
pothesis with the highest probability and labeled it “ver-
i�cationist.” According to Popper (1959:399) : “Science
does not aim, primarily, at high probabilities. It aims at a high
informative content, well backed by experience. But a hypoth-
esis may be very probable simply because it tells us nothing, or
very little. A high degree of probability is therefore not an
indication of ‘goodness’—it may be merely a symptom
of low informative content.”

Popper’s statement is not at odds with the law of like-
lihood. For one thing, his statement (as well as Siddall
and Kluge’s misleading criticism) concerns the probabil-
ity of a hypothesis, whereas likelihood is the probability
of the evidence (see Popper’s views on likelihood). More-
over, the practitioner of likelihood seeks high probabili-
ties only in a relative, not an absolute, sense. The goal is
not to obtain the highest possible probability but rather
to determine the hypothesis for which a given body of
data has the highest probability. Consequently, the prac-
titioner of likelihood may actually strive to obtain low
probabilities in an absolute sense. Because the proba-
bility of the evidence tends to decrease with increasing
amounts of data, any researcher who advocates collect-
ing more rather than less data is effectively seeking to
obtain lower rather than higher absolute probabilities.

p(e j b) and PTP
Our conclusions about p(e j b) run counter to those

of Faith and Cranston (1992; see also Faith, 1992), who
equated p(e j b) with the PTP value—that is, the proba-
bility of an optimal tree length as short as or shorter than
the length of the optimal tree for the observed data given
the null hypothesis of random data. We dispute neither
the usefulness of the PTP for testing hypotheses about
structure in a data matrix nor the compatibility of such
tests with Popper’s concept of corroboration. Neverthe-
less, we take issue with Faith and Cranston’s interpreta-
tion of PTP as representing p(e j b) in Popper’s corrobo-
ration expression (see also Farris, 1995; Carpenter et al.,

1998), an interpretation that confuses the hypothesis and
background knowledge of different tests.

Faith and Cranston devised the PTP to test the null
hypothesis that the states within characters are dis-
tributed randomly among taxa, and they equated the as-
sumptions of this null hypothesis with the background
knowledge (b) in Popper’s corroboration expression.
These two positions are logically incompatible. Accord-
ing to Popper, the background knowledge consists of
hypotheses not currently being tested (see The relation-
ship between corroboration and likelihood). Consequently, a
hypothesis—including a null hypothesis—cannot both
be the subject of a test (in this case, the PTP test) and
at the same time form part of the background knowl-
edge. Contrary to Faith and Cranston’s interpretation,
the PTP value does not correspond with p(e j b) but
with p(e j hb). The correspondence, however, is not ex-
act; the PTP value is not the probability of the evidence
(e) itself—that is, the probability of the score of the op-
timal tree—but the cumulative probability of all scores
as good or better than that of the optimal tree (Farris,
1995).

On the other hand, the PTP is used to test an
assumption—that is, part of the background knowl-
edge (b)—adopted in a test that we have called a stan-
dard phylogenetic analysis. Such an analysis is used
to evaluate a different hypothesis or set of hypotheses
than the null hypothesis of the PTP test. Speci�cally, it
is used to evaluate a set of alternative trees. As Faith
and Cranston noted, a standard phylogenetic analysis
can yield an optimal tree or trees even from random
data. Therefore, if such an analysis is to be considered a
meaningful test of the hypotheses (trees), one must as-
sume that the data are not random, that they exhibit
signi�cant non-random structure. An assumption of
non-random data thus forms part of the background
knowledge for the test of the alternative trees, and in
accordance with Popper’s views (see Evaluation of Alter-
native Phylogenetic Methods or Models), this assumption
can itself be tested. Testing this assumption is the role
of the PTP test. A low PTP value means a low proba-
bility of obtaining a score as good as or better than that
of the optimal tree for the observed data, given the null
hypothesis that the character state distributions among
taxa are random. This low probability translates to a low
degree of corroboration for the null hypothesis, which
implies a high degree of corroboration for the mutually
exclusive alternative hypothesis that the character state
distributions are not random. And this high degree of
corroboration for the alternative hypothesis in turn jus-
ti�es use of that hypothesis as an assumption—that is,
part of the background knowledge—in an evaluation of
alternative trees.

Thus, contrary to Faith and Cranston’s view, a low
PTP value is desirable not because it represents a low
p(e j b) for a test of alternative trees, but because it rep-
resents a low p(e j hb) for a different test in which the
hypothesis (in this case a null hypothesis) must be re-
jected to justify use of a mutually exclusive alternative
hypothesis as an assumption (i.e., part of b) in the test
of alternative trees. Although the PTP is used to test
part of the background knowledge required by the test
of alternative trees, it cannot be equated with p(e j b)
in the latter test because two entirely different tests are
involved with regard to both hypotheses and evidence.
In a test of alternative trees, the hypothesis (h) is a tree,
and the evidence (e) for which the probability is calcu-
lated consists of an observed distribution of character
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states among taxa. In a PTP test, the hypothesis (h0) is a
null hypothesis of random character state distributions,
and the evidence (e 0) for which the probability (i.e., PTP)
is calculated is the score of the optimal tree for the ob-
served (unpermuted) data. Therefore, the permutation

tail probability cannot possibly be equated with p(e j b)
in a test of alternative trees, because it is the probability
of entirely different evidence (e 0). In sum, the PTP test
�ts squarely into Popper’s corroboration, but not in the
manner described by Faith and Cranston.


